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INTRODUCTION 

The need for correlating creep-rupture data and for extrapolation of 
such data to long rupture times has been treated in recent years by the use 
of 5rtime-temperature parameters. f v  A large number of such parameters 
have been proposed, and although many investigations have been conducted 
to determine their relative ability to perform this correlation and extra- 
polation, there is no universally accepted procedure for selecting an op- 
timized parameter or for determining the constants involved in such an 
opt imiz ed par am et ri c rep res entation. 

passes the subjective aspects of parameter selection, introducing a so- 
called "minimum -commitment, station-function approach, '' In this approach 
the hypothesized time-temperature-stress relation is taken in  sufficiently 
general form to include a11 commonly used parameters, so that each has an 
equal chance to emerge as the proper one. The functional forms involved in 
the relation are not taken in analytical form; rather they are defined as 
~~station-functionsP9 - their numerical values at selected station values of the 
independent variable. Using station functions not only avoids ''forcing' the 
pattern of the data, but provides an incidental benefit in avoiding illconditioning 
of the system of resulting equations, which are computer-solved for the op- 
timum data representation. This feature also contributes to the objectiveness 
of the method, and gives each time-temperature parameter consistent with the 
model an equal chance to demonstrate itself as the correct one. 

In reference 1 the model equation used was in the form 
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w In a recent report Manson (ref. 1) has suggested a method which by- 

F ( b g  t) -I- P(T) = G(1og 0) 
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where F is a function of the logarithm of rupture time, t; P is a function of 
temperature; and G is a function of stress. Further study has led to an 
improved model in the form 

F(T) log. t + P(T) = G(1og a) (2) 

Here F and P are both functions of temperature, but the t ime function is 
replaced by the term log t,  which simplifies the extrapolation process to 
mere substitution of larger  values of lag t ,  rather than requiring an extra- 
polation of the numerically-defined function F(1og t). 

Equation (2) is still general enough to embrace all commonly used time- 
temperature parameters; in fact it is more general than is really required 
for a first formulation. Therefore, a specialized case is examined first, in 
which F(T) = 1 -F AP(T), resulting in a relation 

log t + A P(T) log t + P(T) = G(log 0) (3) 

Here A is a constant. It can be shown that this equation not only includes all 
the commonly used time-temperature .parameters, but that even in  its special- 
ized form it is general enough to include relations not normally included in the 
common time -temperature parameters. 

experimental data. U s e  of the more general form given by equation (2) is left 
for a later study. The report is presented in the form of a series of narrative 
figures which are in the main self-explanatory and require only minor com- 
ment , which follows * 

In this report we shall outline how equation (3) can be applied to a set of 

DISCUSSION 

Figure 1 identifies the features regarded as significant in what we have 
termed the "minimum -commitment, station-function approach. '* Figure 2 
shows the three forms of minimum-commitment formulations that can be used, 
emphasizing equation (3) which is treated in detail in this report. It is stated 
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without proof in figure 2 that the function P can be assigned an arbitrary 
value at any temperature of choice. Specifically, it may be made equal to 
zero along any one of the available isothermals. That equation (2) is valid 
for the commonly used Larson-Miller parameter is demonstrated in fig- 
ure 3,  where it is also shown that a function P exists for which P = 0 
at any arbitrary temperature. The treatment shown in figure 3 for the 
Larson-Miller parameter can be applied in a similar manner to any of the 
other commonly used time -temperatuye parameters. 

current study by the NATO AGARLD Committee. The data points are esti- 
mated, but the set serves well for illustration. Smoothed isothermal plots 
are drawn through the data; in general such curves can be drawn by eye or  
by a least squares f i t  of a second-degree polynomial through the available 
data. These smoothed curves, of course, are used only for interpolation 
in the experimentally established rupture time range. The figure also 
shows that P stations are chosen at each available isothermal, and that G 
stations are chosen at nine stress values embracing the experimental stress 
range. 

Equations can be derived either from raw data points or  from net points 
chosen at time intervals of 1/4 log cycle along the smooth isothermals drawn 
through available data. The method for setting up the equation in the form of 
equation (3) when smoothed isothermals are used is shown in figure 5 for one 
net point, Here log t =-3.25, T3 = 850 C, therefore P = P3, and log u = 

$. 146. Since there is no station at, log o = 1,146, the value of G(1.146) 
i-s stated in terms of the G values at adjacent stations, using quadratic inter- 
polation. 

Figure 6 lists the sources from which the final set of equations is derived. 
The principal source is the data - either raw data points, o r  points derived 
from the faired isothermals. If the main function of the analysis is to extra- 
polate an isothermal, the equations associated with points derived from that 
isothermal may be entered into the analysis several times in order to BPforcert 
the final correlation to conform best along the isothermal to be extrapolated 
(usually at some sacrifice to conformity with the experimental data at another 

Table I and figure 4 show the isothermal input data for a material under 
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isothermal). Thus, if several isothermals are to be extrapolated, several 
analyses will be made, each one emphasizing one isothermal. If, however, 
only a correlation is the main objective, then a single analysis is made; no 
isothermal is used a multiple number of times. Figure 6 also shows that 
some of the equations of the system are derived from considerations of con- 
tinuity of the station-function curves; usually only the curves of G (log 0) 
versus log (r. Such continuity equations are not necessary if there is con- 
siderable overlap in range of stress covered by the successive isothermals. 
When the overlap is very limited the continuity equations are introduced. 
One form that such a relation can take is 

Here Gn to Gn+4 are five successive station function values of equally 
spaced values of log u. The equation states that the slope at the mid value 

is the same whether point Gn+2 is considered on the quadratic Gn+2 
through Gn, Gn+l, Gn+2 o r  on the quadratic through Gnb2, Gn+3, Gn+4. 
Continuity equations may be entered once or  more than once, depending on 
the degree of stress overlap and on the limit of the number of equations that 
the available computer can handle. 

Once the system of equations is formulated, they can be solved by least 
squares methods. Unfortunately, when formulated using equation (3) as a 
model, the resulting equations are non-linear because A is an unknown, as 
are the values of P which it multiplies. Figure 7 shows two methods of 
solution. Values of A can be scanned over the practical range of 0,1 to 
-0.2. The value of A which results in the smallest standard deviation be- 
tween input data points and their predicted values is taken as the best value, 
together with its associated values of P(T) and G(1og a). Alternatively, a 
method of successive approximations is used, as also shown in figure 7. The 
first approximation is obtained by setting A = 0, resulting in a linear set 
of equations, from which P1(T) may be determined. This first approximation 
of P(T) is then used as a known function in that part of the equation which is 



multiplied by the unknown A, whereas P(T) is left as an unknown where it 
stands alone linearly. A new value of P2(T) is determined, which is then 
kreated in the same way to get a third approximation. The process is re- 
peated until successive calcuIations cause no change kietween respective P(T) 
values (within the third significant figure), at which time the solution is regarded 
as converged. Of course, the entire process is completely co-mputerized, 
and the computer output provides graphical displays of all functions and the 
back-computed isothermals from the station functions derived from the so- 
lution. 

Figure 8 shows the results of the application of the foregoing proce- 
dure to the NATO data set of figure 4. The analysis presumes that data 
are available up to 3200 hours rupture time. Because the number of '%awVP 
data points in the rupture time range below 3200 hours is quite limited, the 
analyses is performed on only the 'rfairedP* curves through the data; how- 
ever, if  each isothermal were established by a more exclusive series of 
data points, the analyses could equally well be made by using the raw data 
points. The analysis was made using both the A-scan method and the suc- 
cessive approximations method. It is seen that both methods indicate an op- 
timum value of A close to -0.1; the exact. value actually is not critical 
since each value of A carr ies  with it different P(T) and G(1og a) functions 
which compensate for  the difference in A resulting in very similar correla- 
tions and extrapolations.over the range of values of A. Therefore, the 
rounded value of A = -0.1 was regarded as satisfactory, and was used for 
the calculation of the isothermals shown in figure 9. 

In this case all isothermals were treated equally; that is no multiple use 
of data was used for any one isothermal. If any one isothermal had been re- 
garded as well established experimentally, then the analysis for that isother- 
mal could have been made by using the points on that isothermal more than once. 

Figures 10 and 11 show the P(T) and G(1og u) functions associated with 
the value of A = -0.1. The computer program provides plots of all functions, 
those of figures 10 ,and 11, required in the -lysis. 



CONCLUDING REMARKS 

Treatment of data sets by application of equation (3) is now completely 
computerized. When applied to artificial data sets, such as those conform- 
ing to the Larson-Miller, Manson-Haferd, o r  Orr-Sherby-Dorn parameters 
the extrapolations (by a time factor of 20) were essentially identical to 
those determined from the analytical relations used in generating the short 
time data. Thus the method will produce the correct predictions if the basic 
data conform to one of the commonly used time-temperature parameters, andwhen 
the input data is plentiful and given to a high degree of accuracy. Obviously 
most experimental data sets will  fall short in quantity and quality of the type 
of data points that lend themselves to an ideal analysis. Much yet remains 
to be done to determine how best to use the method and what its limitations 
are .  

Figure 12 outlines some areas of possible joint endeavor among groups 
interested in the problem of correlation and extr olation of stress-rupture 
data. One of the main goals would be for  the involved technical community 
to  arrive at a common viewpoint regarding validity of this o r  any other pro- 
cedure for correlating creep rupture &&a. This can best be accomplished 
by actually trying out the procedure on individual data, sets within each in- 
vestigator's experience. From direct experience it will become evident how 
such data might have better served the purpose if they incorporated certain 
desirable features, and therefore how data should be generated in the future. 
Perhaps it will  become evident that certain constants o r  function 
can be assumed to be the same for a11 materials or for certain classes of ma- 
terials. The actual generation of data, individually o r  collectively could also 
be a ground for cooperative effort. How data-scatter, heat-to-heat varia- 
tions, material instabilities, and other complic ing factors are to be treated 
also requires joint investigation. As an ultimate goal, we can hope to achieve 
a common agreement on how best to generate data and how ,best to analyze 
such data - a set of 9 P ~ t a n d a r d ~ ' P  we can all accept and follow. 
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TABLE I. - RAW DATA SUPPLIED BY THE 

NATO AGARD COMMITTEE 

Wmber 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 

? empe rature 

750. 
750 
750. 
750 
800 e 

800 
800 
800 
850. 
850, 
850 
850. 
850 
850 ., 
900. 
900. 
900 0 

900. 
900 0 

900 0 

900 0 

900 0 

950 
950. 
950. 
950. 
950. 
950. 
950. 

Stress, 
rg/mm2 

72.1 
38.7 
28.4 
20.8 
38,7 
28.4 
20,8 
15.3 
28.4 
20.8 
15. 3 
11.2 

8.2 
6.0 

20.8 
15. 3 
11.2 
8.2 
6.0 
4.4 
3.2 
2.4 

11.2  
8.2 
6.0 
4.4 
3.2 
2 . 4  
1 .7  

Time, 
h r  

20.0 
1000.0 
7000,O 

30000,O 
100,o 
800,O 

3000.0 
10000.0 

50,O 
400.0 

1000.0 
5000.0 

10000.0 
2 5000 0 

50. a 

600. a 
150.0 

1500.8 
3000. C 
7000. C 

10000. c 
20000, c 

40. C 
200. c 
800. C 

1500, C 
2000. c 
5000, ( 

10000, ( 

I. 857 
1.587 
1.453 
1.318 
1,587 
1.453 
1.318 
1.1 
1,453 
1.318 
1.184 
E. 049 

913 
778 

1,318 
I. 184 
1.049 
.913 
778 

., 643 

., 505 
380 

1.049 
L) 919 
* 778 
., 643 

505 
.38a 
., 230 

__i 

Log, 
time 

1,301 
3. ooa 
3.84: 
4.477 
2. ooc 
2-90: 
3,477 
4. ooc 
1.69E 
2,602 
3. ooc 
3.69E 
4. ooc 
4,39: 
I. 69l 
2.17t 
2.77t 
3. 17t 
3.47' 
3.84f 
4.00( 
4.30: 
1.60: 
2. 30: 
2.90: 
3,17f 
3.30' 
3.691 
4.00( 



TABLE II. - SMOOTHED DATA READ FROM 

1.5181 
1.477 
1.423 
1.361'4.25 
1 301 
1.585 
1.556 
1.518 
1.477 
1.431 
1.380 
1.322 
1.255 
1.176 
1.454 
1.414 
1.371 
1.322 
1.267 
1.204 

1.086 

.934 

1.146 

1.012 

.845 
1.301 
1.243 
1.176 
1.107 
1.033 

,963 
.875 
.792 
.681 
.562 
.414 
1.021 

.977 

.924 

.863 

.792 

.707 

.612 

.498 

.361 

.217 

Numbei I 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21  
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

42 I/ 
54 

Note: C 

3.50 
3.75 
4.00 

4.50 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

3.50 

4.00 

3.25 

3.7F 

4.25 
1.75 
2.0C 
2.25 
2.50 
2.7E 
3.0C 
3.25 
3.5C 
3.7E 
4.0C 
4.2: 
1.7: 
2.0C 
2.2f 
2.5C 
2.7: 
3.0( 
3.21 
3.5( 
3.7; 
4.0( 

ISOTHERMALS OF NATO DATA 

emperature 

750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
750. 
800. 
800. 
800. 
800. 
800. 
800. 
800. 
800. 
800. 
850. 
850. 
850. 
850. 
850. 
850. 
850. 
850. 
850. 
850. 
850. 
900. 
900. 
900. 
900. 
900. 
900. 
900. 
900. 

900. 
900. 
900. 
950. 
950. 
950. 
950. 
950. 
950. 
950. 
950. 
950. 
950. 

- 
tress ,  

2 d m m  

i7.50 
i3.00 
i8.00 
i3.50 
L9.00 
15.00 
LO. 50 
36.50 
33.00 
30.00 
E. 50 
23.00 
20.00 
38.50 
36.00 
33.00 
30.00 
27.00 
24.00 
21.00 
18.00 
15.00 
28.50 
16.00 
13.50 
21.00 
18.50 
16,OO 
14.00 
12.20 
10. 30 
8.60 
7.00 

20.00 
17. 50 
15.00 
12.80 
10.80 
9.20 
7. 50 
6.20 
4.80 
3.65 
2.60 

10.50 
9.50 
8.40 
7.30 
6.20 
5.10 
4.10 
3.15 
2.30 
1.65 

Time, 
h r  

31.6 
56.2 

100.0 
177.8 
316.2 
562.3 

1000.0 
1778.0 
3162.0 
5623.0 

10000.0 
17780.0 
31620.0 

100.0 
177.8 
316.2 
562.3 
1000. a 
1778.0 
3162.0 
5623. a 

ioooo . a 

l oo .  a 
56.2 

177. E 
316.2 
562. I 

1000. c 
1778. C 

3162.C 
5623. C 

10000. c 
17780. C 

56. i 
100. c 
177. t 
316.2 
562. 

1000. C 
1778.C 
3162.C 

5623. ( 
10000. ( 
17780. ( 

56. 
100. ( 
177. t 
316.; 
562. : 

1000. ( 
1778. I 
3162. ( 
5623. ( 

10000. ( 

T data 5 log t = 3.5 were used to predict iso- 
thermals shown in figure 9. 



B A S I S  O F  T H E  M I N I M U M - C O M M I T M E N T  S T A T I O N - F U N C T I O N  A P P R O A C H  

I. CHOICE OF GENERAL MODEL TIME-TEMPERATURE-STRESS RELATION EMBRACING 
AT LEAST ALL COMMONLY USED PARAMETRIC FORMS. "GROWTH POTENTIAL" 
OF EQUATION FORM DESIRABLE. 

11. EXPRESSION OF FUNCTIONS INVOLVED IN MODEL EQUATION BY NUMERICAL VALUES 
OF FUNCTION AT SPECIFIED "STATIONS" ALONG PERTINENT VARIABLE SCALE. 
INTERPOLATION FORMULAS USED FOR INTERMEDIATE VALUES OF INDEPENDENT 
VARlA BLE. 

111. REPRESENTATION OF AVAILABLE EXPERIMENTAL DATA A S  SERIES OF RELATIONS 
AMONG TIME, TEMPERATURE, AND STRESS CONFORMING TO MODEL EQUATION. 

IV. SOLUTION OF EQUATIONS BY COMPUTERIZED LEAST-SQUARES PROCEDURES. 
CS-58062 

Fig. 1 

FUNCTIONAL RELATIONS CONFORMING WITH COMMONLY USED TIME 
TEMPERA TU RE PARAMETERS 

I. PREVIOUSLY USED: 

11. IMPROVED FORM: 

111, SPECIALIZED FORM OF EQUATION (2) WHEREIN F = 1 + AP: 

log t t AP(T) log t t P(T) = G(log 0 )  (3) 

log t = LOG RUPTURE TIME 

A = CONSTANT 

P(T) = FUNCTION OF TEMPERATURE, HANDLED A S  A STATION FUNCTION 

G(log 0 )  = FUNCTION OF STRESS, HANDLED A S  STATION FUNCTION 

THE FUNCTION P(T) CAN ARBITRARILY BE ASSIGNED A ZERO VALUE AT 

ANY SINGLE SELECTED TEMPERATURE. Fig. 2 CS- 58063 



EXAMPLE OF EXPRESSION OF COMMONLY USED TIME TEMPERATURE PARAMETER 
IN SPECIALIZED FORM 

CONSIDER LARSON-MILLER PARAMETER 

(T t 460) (20 4. log t) 

PARAMETRIC VALIDITY IS NOT ALTERED BY MULTIPLYING BY CONSTANT OR ADDING 
A CONSTANT. THEREFORE PARAMETER CAN EQUALLY WELL BE EXPRESSED AS 
M(T t 460)(20 t log t) t N 

CHOOSING N =  -20 AND M =  

WE CAN REWRITE PARAMETER AS 

WHERE To IS ANY TEMPERATURE 

log t 4.1 20 ~(~ - $1 log t [20($.!g - l)i 
WHICH IS IN FORM: log t t AP(T)lOg t + P(T) 

WHERE A =  1/20 

P(T) = - T t 460 - 1 NOTE THAT P(T) IS  ZERO AT T = To 
To t 460 

CS- 58067 Fig. 3 

SET-UP OF STATIONS FOR NATO SAMPLE DATA SET 

2 . O r  I 

LOG(STRESS, 
kg/mm2) - l . O k G e  

I 950, P5 

I I I I I I I 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

LOG TIME, HR 
PIT) STATIONS: T -750, SOo, 850, 900, 950 C 
G ( l q  01 STATIONS: log o = 0.2, 0.4, 0.6, . . ., 1.4, 1.6, 1.83 
log t STATIONS: 1.5, 1.75, 2.0, . . ., 3.5 CS-58076 

Fig. 4 



TYPICAL FORMULATION OF EQUATION FOR ONE DATA POINT 

I 
I - Ga 

LOG(STRESS, 
kglmrn2) 

2.0 

I 
I 
I 
I 

85OoC, P3 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
LOG TIME, HR 

AT POINT 0 
log t = 3.25, P = P3 
log (r = 1.146 

APPLYING EQUATION log t + AP(T)log t + P(T) = G(log d 
THEREFOR€ G = 0.171 Ge + 0.927 Gf - 0.098 Gg 

3.25 + 3.25 AP2 + P2 = 0.171 Ge -I- 0.927 Gf - 0.098 Gg cs-58077 

Fig, 5 

T Y P E S  OF E Q U A T I O N S  U S E D  I N  F O R M U L A T I O N  

I. INDIVIDUAL DATA POINTS, ONE FOR EACH POINT, USING "RAW" DATA 
OR NET POINTS FROM FAIRED CURVES. 

11. MULTIPLE USE OF DATA POINTS ALONG ISOTHERMAL TO BE EXTRAPOLATED 
(THREE TO TEN TIMES, DEPENDING ON LIMITS OF COMPUTER AVAILABLE). 

111. "CONTINUITY" EQUATIONS TO INSURE SMOOTHNESS OF CURVES. (MAY 
NOT BE NECESSARY WHEN SMOOTHED ISOTHERMALS ARE USED FOR 
NET POINTS. 1 

Fig. 6 
CS- 58 06 5 



S O L U T I O N  OF S E T  O F  E Q U A T I O N S  

FOR SPECIALIZED MODEL, SOLUTION I S  COMPLICATED BY NONLINEAR FORM RESULTING 
FROM PRODUCT OF UNKNOWNS A AND P. CAN PROCEED BY: 

I. TRIAL AND ERROR: 
SCAN SERIES OF VALUES OF A; e.g., A = 0.1, 0.05, 0, -0.05, -0.1, -0.12, ETC. 
LOWEST STANDARD DEVIATION IDENTIFIES OPTIMUM A AND ASSOCIATED P 
AND G FUNCTIONS. 

11. SUCCESSIVE APPROXIMATIONS: 

A. START WITH A = 0, EQUATION BECOMES 

log t -t Pl(T) = G1 (log 01  

WHICH I S  LINEAR SET AND CAN READILY BE SOLVED. GET SECOND APPROXI- 
MATION P$T) BY USING PI(T) ONLY IN NONLINEAR PORTION OF EQUATION. 

log t i- APl (T)  log t i- P$T) = G i l o g  01 

SOLVE LINEAR SET FOR P$T) AND REPEAT PROCEDURE UNTIL SOLUTION 
CONVERGES BY SHOWING NO CHANGE IN THIRD SIGNIFICANT FlGURE IN 
SUCCESSIVE CALCULATIONS. PROCESS IS COMPLETELY COMPUTERIZED. 
GRAPHICAL DISPLAY OF SOLUTION I S  ALSO COMPUTERIZED. 

cs -58066  

Fig. 7 

EXAMPLE: APPLICATION TO NATO HYPOTHETICAL DATA SET 

A-SCAN USING FAIRED DATA 

STANDARD .04 
DEV lATl ON 

P I 

I 

‘-SOLUTION BY 
SUCCESSIVE APPROXIMATIONS 

0 
-. 4 -. 3 -. 2 -. 1 0 .1 .2  

A 

BOTH APPROACHES SHOh VALUE OF A IN VICINITY OF -0.1. 
THE EXACT VALUE OF A IS  NOT CRITICAL IN AFFECTING 
EXTRAPOLATIONS. 

Fig. 8 CS-58071 



EXTRAPOLATIONS FOR NATO HYPOTHETICAL DATA SET 

LOG(STRESS, 
kglm m2) 

1 I I I I I ,  I I 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Fig. 9 

LOG TIME, HR CS-58069 

TEMPERATURE FUNCTION 

A =-0.1 

L 

-4 1 I 1 I 
750 800 850 900 950 1000 

TEMPERATURE, OC CS- 5807 0 

Fig. 10 



STRESS FUNCTION 

V- 

A =-0.1 

0 . 5  1.0 1.5 2.0 

Fig. 11 

LOG(STRESS, kglmm2) CS-58068 

P O S S I B L E  A R E A S  F O R  J O I N T  I N Q U I R Y  

1. COMPARE THIS METHOD WITH COMMONLY USED TIME TEMPERATURE PARAMETERS. 

2. EVALUATE METHOD ON DATA SETS AVAILABLE TO MEMBERS IN ORDER TO ESTABLISH 
CONFIDENCE, OR TO REFLECT PROBLEMS OF PROCEDURE. 

3. DETERMINE CRITERIA FOR OPTIMIZING THE GENERATION OF NEW DATA FOR USE 
IN METHOD. 

4. ESTABLISH WHETHER THERE ARE CONSTANTS OR FUNCTIONAL FORMS THAT CAN BE 
"UNIVERSALIZED" FOR ALL MATERIALS OR FOR ClRCUMSCRl BED CLASSES OF 
MATERIALS. 

5. STUDY EFFECT OF MATERIAL INSTABILITIES OR OTHER METALLURGICAL COMPLICA- 
TIONS ON VALIDITY OF THIS APPROACH. 

6. STUDY PROBLEMS ASSOCIATED WITH DATA SCATTER, LOT-TO-LOT VARIATIONS, 
ACCEPTANCE TESTING, AND OTHER PRACTICAL FACTORS. 

7, EVALUATE POSSIBILITY OF SETTING "STANDARDS. 
CS-58064 

Fig. 12 


